IMPORTANT NOTE: Email your Host Id to Honeywell WEBs Customer Care (websliense@honeywell.com), so we can move the license to your organization. For additional queries contact to the distributor.
TABLE OF CONTENTS

Order numbers (SKU): .. 4
- HMI configuration principles .. 4
- HMI service ... 5
- HMI pin .. 7
- HMI user rights .. 8
- HMI PIN lock-out .. 9
- Enabling the alarming on the HMI ... 10
- Enabling the alarm LED on the HMI ... 10
- Adjusting alarm poll-rate for the HMI ... 11
- Local language HMI menus - translation ... 12
- Login user into the HMI and control the translation ... 13
- Filling the Fast Access Lists ... 13
- Setting the time format on the home screen .. 15

Onboard Inputs and Outputs .. 16

- Dual Ethernet ... 17

- Separated networks .. 17

- Network switching mode .. 18

- Combined network switching & separated networks .. 19

- Front USB/Ethernet interface ... 19

- Secure Boot – Increased Cyber Security ... 21

- Part numbers and supporting material .. 22

- Performance .. 23

- Performance tests .. 23

- Panel-Bus capacity .. 23

- Panel-Bus Communication tuning .. 24

- Panel-Bus cable type and length ... 25

Compatibility .. 26

- WEBs compatibility .. 26

- Spyder & Stryker tool compatibility .. 26

- 3rd party modules .. 26

- CIPer Model 50 specific modules ... 27

- Web-Browser compatibility ... 29

- Input/Output module compatibility .. 29

- CIPer Model 50 Firmware ... 30

- Firmware & Hardware compatibility ... 30

- Firmware upgrade ... 30

- How to Restore the CIper Model 50 – Installation of the “Clean Dist” file 31

- Reset CIper Model 50 controller credentials ... 33

- Technical Documentation ... 34

Appendix ... 35
USB Driver Installation for Windows 7 .. 35
USB Driver Installation for Windows 8 .. 40
USB Driver Installation for Windows 10 ... 44
Order numbers (SKU)
The onboard HMI is featured in the below listed order numbers:
- WEB-EAGLENX26D
- WEB-EAGLENX26ND

IMPORTANT:
To make efficient use of HMI functionality, it is required to do a few set-up steps in Honeywell WEBStation N4.4.93.40.8 or higher. Refer section “HMI configuration principles” given below.

- WEB-EAGLENX26D

The XL2000HMI can be connected and operated with the below listed OS (SKU) numbers.

- WEB-EAGLENX26ND

HMI configuration principles
To get the onboard HMI or detached HMI operational, the following configuration principles need to be done in WEBs N4:

1. Add & enable the HMI Service.
2. Set the PIN for the HMI access.
3. Add HMI and LED Alarm recipients.

NOTE: As long as there are un-acknowledged alarms in the station, the alarm symbol will be blinking, regardless if a user is logged-in to the HMI or not. See below picture:

4. Configure the alarming for the HMI.
5. Fill the Fast Access Lists (FAL) with data-points, schedules & parameters.
6. If desired, create a custom HMI sequence.
HMI service
The onboard and detached HMI will only work when the HMI Service, called “HonEagleHawkHmiService” has been placed into “Services” of your station.

Important:
Always place the “HonEagleHawkHmiService” into the “Services” folder. **Do NOT place it under any service within “Services”**.

Step 1:
Select the “honEagleHawkHMI” palette and drag the “HonEagleHawkHmiService” into “Services” of your station.
Step 2:
Enable the "HonEagleHawkHmiService".

Step 3:
Changing, deleting or translating the messages on the HMI. Changing or deleting can be done in the property sheet of the HMI Service – see below:
For translating the “Warning” and “Welcome” message of the HMI, you can also use the WEBs N4 Lexicon tool, see section “Local language HMI menus – translation” in this bulletin.

HMI pin
PIN, PIN-configuration and log-off definition is fully integrated in the Niagara “User Service”. This makes it secure and allows to re-use the user definitions already in place for the station.

NOTE: It is mandatory to enter a 5-digit (Numeric only) PIN here. For security reasons, there is no default PIN.

If the PIN is not present, the controller will not function.
HMI user rights
In the Admin column (marked red) for the user permissions of the RoleService, it is mandatory to enable “Read” rights to the categories you want access via HMI, otherwise the user will have no access.

You may also provide the “Write” and “Invoke” rights to a category as required.
HMI PIN lock-out
For Cyber Security reasons, users will be locked-out after multiple entries of a wrong PIN:

- After three wrong PIN entries in a row, user login is blocked for 1 min. For each wrong PIN after this, the user must wait for 1 min.
- This time sequence is repeated until a successful login is done.

NOTE:
For Cyber Security reasons, all users are blocked during the waiting time. This is an intentional behavior.

1st time wrong PIN:

2nd time wrong PIN:

3rd time wrong PIN:

Wait time is 1 minute for all users.

4th/5th/6th/… etc time wrong PIN:

Correct PIN entry will restart the lock-out sequence.
Enabling the alarming on the HMI
From the “honEagleHawkHMI” palette, drag the “HmiAlarmConsoleRecipient” into the “Alarm Service” and connect it to the “Default Alarm Class”.

Enabling the alarm LED on the HMI
From the “clOnboardIO” palette, drag the “EagleHawkLedRecipient” into the “Alarm Service” and connect it to the “Default Alarm Class”:
Adjusting alarm poll-rate for the HMI

The update rate for alarms and data-points on the HMI has a default setting. This can be adjusted with the CPU performance, to balance the information demand.

IMPORTANT:

I) The faster the alarm and data-point poll rate, the more impact it will have on the performance of the station. This might slow the CPU or station performance.

II) Default setting for alarm and data-point poll-rate is 15s (15,000 millisecond).

III) Adjustable range is from 5s to 120s (5,000…120,000 millisecond).

IV) By default, the poll-rate setting is hidden and can be made visible in the Slot Sheet.

When adjusting for faster polling, watch the CPU load of the station.

To change the alarm poll rate, select the alarm menu item and select the Slot Sheet:

![Slot Sheet](image)

Right click the "updateIntervalMillis" and uncheck the "Hidden" flag.

![Config Flags](image)
Double-click the Alarm List in "HonEagleHawkHmiService" and change the poll-rate as appropriate.

Local language HMI menus - translation

The HMI menus can be localized by making use of the standard Lexicon tool of WEBs N4:

- Open Lexicon tool of WEBs N4 and your local language lexicon file
- Open the "honEagleHawkHMI module
- Do the translations and save this lexicon file
- Commission the lexicon file into the controller
- Generate a new user which uses the new language file
Login user into the HMI and control the translation

Filling the Fast Access Lists

To fill the Fast Access Lists (FAL) with points, parameters and schedules, you have two options:

Option 1: Drag and drop points from the Navigation tree on the left into the Fast Access List on the property sheet on the right.

Option 2: Use tagging: Drag and Drop "HonTagDictionary" into the "TagDictionaryService". Select the point(s) you want to add, open the tag dialog, select the "HonTagDictionary" and select the tag "FALname".
In the attached tag, add the name of the Fast Access List(s) you want to have this data point represented in. Separate multiple Fast Access Lists by using a semicolon ";".
Setting the time format on the home screen

Step 1:
Make sure that the Lexicon of the desired local language is installed. If not, use the Lexicon Installer to install it.

Step 2:
Set the language in the Station/PlatformService "locale" field.
Onboard Inputs and Outputs

<table>
<thead>
<tr>
<th>Onboard Inputs/Outputs</th>
<th>Description</th>
<th>Max. cable length</th>
<th>WEB-EAGLENX26D</th>
<th>WEB-EAGLENX26ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI (Universal Input)</td>
<td>NTC10kΩ (Type II), NTC20kΩ, 0...10V, slow BI 0.4 Hz Short-circuit protected against 24VAC</td>
<td>1200 ft</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>NTC10kΩ (Type II), NTC20kΩ, 0...10V fix pull-up, slow BI 0.4 Hz Short-circuit protected against 24VAC</td>
<td>1200 ft</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BI (Binary Input)</td>
<td>open = 24 VDC, closed 2.0 mA, totalizer @ 15 Hz max. Short-circuit protected against 24VAC</td>
<td>1200 ft</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>AO (Analog Output)</td>
<td>0..11 V (max. 1 mA)</td>
<td>1200 ft</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BO (Binary Output)</td>
<td>Relay Normally Open contact 3A, 250VAC, 30VDC</td>
<td>1200 ft</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Relay Normally Open contact 10A, 250VAC, 30VDC</td>
<td>1200 ft</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Relay Normally Open contact with one common</td>
<td>1200 ft</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

For all technical details on Onboard Inputs/Outputs, please refer to the CIPer 50 Product Datasheet (31-00197-01) and CIPer 50 Installation & Commissioning Instructions (31-00233EFS).
Dual Ethernet

The CIPer Model 50 is equipped with a Dual Ethernet interface. All information about the Dual Ethernet can be found in the CIPer 50 Installation & Commissioning Instructions (31-00233EFS).

Separated networks

SEPARATED NETWORKS = DEFAULT SETTING
For cyber security reasons, the default setting of the Dual Ethernet is with the following IP settings:

- Ethernet port 1: IP address 192.168.200.20, subnet 255.255.255.0
- Ethernet port 2: IP address 192.168.201.20, subnet 255.255.255.0
Network switching mode

Optionally, the Dual Ethernet can be operated in network switching mode. If this mode is desired, disable one of the Ethernet ports in Niagara – see screenshot below.

Typical application scenarios are a closed BMS networks, like for daisy-chaining plant controllers or daisy-chaining room controllers on Ethernet.

NOTE: The switching functionality will not work during power-fail of the CiPer 50 controller.

Important: Set a gateway address

For the Ethernet switching functionality to work, it is mandatory that you enter a Gateway address. If there is no gateway in the subnet, then use a gateway address that relates to the IP address of the Ethernet adapter that is enabled.

In the screenshot below, the gateway address is 192.168.1.1, hence the IP address of Ethernet adapter 1 must be in the range of 192.168.1.2 to 192.168.1.255.
Combined network switching & separated networks
Optionally separating networks and switching functionality can be combined.

This allows to have one (or more) controllers connected to the customer intranet, and all other controllers residing in a closed BMS network.

A typical application is the supervisory controller(s) accessible from the customer intranet, and the room controllers residing in a closed network, and thus being not directly accessible from the customer intranet.

Front USB/Ethernet interface
All details regarding installation and commissioning of the CIPer Model 50 can be found within the Installation & Commissioning Instructions 31-00233EFS.

All models of the CIPer Model 50 controller are equipped with a USB 2.0 Device interface at the front, which is an Ethernet over USB connection.

The permanent IP address of this USB interface is 192.168.255.241.

This interface allows connection of WEBs N4 for programming and operation, and for web browsers or 3rd-party touch panels.

If your WEBs N4 PC or your web browser does not connect to this USB interface, the WINDOWS driver may be missing. In this case, please see APPENDIX chapters “USB Driver Installation for Windows 7”, “USB Driver Installation for Windows 8” “USB Driver Installation for Windows 10” installation for WINDOWS 7/8/10.”
ATTENTION:
Due to the risk of short-circuiting (see figure above), it is strongly recommended that the CiPer Model 50 controller be supplied with power from a dedicated transformer. However, if the Model 50 controller is to be supplied by the same transformer powering other controllers or devices (e.g., the PW M-Bus Adapter), care must be taken to ensure that correct polarity is observed.
Secure Boot – Increased Cyber Security
The CIPer Model 50 is an IIoT (Industrial Internet of Things) device. Its benefits and typical deployments include network access as well as browser access via Intranet and Internet.

Beginning with the firmware of this release, the CIPer Model 50 will only boot and run authenticated WEBs N4 firmware. This is achieved by a firmware signature.

To achieve the best possible cyber security, please note the following:

1) Read and apply the Honeywell General Best Practices (31-00129), which you will find on the WEBs Building Forum

2) It is not possible to downgrade the released WEBs N4 firmware to a previous and older firmware version due to Cyber Security reasons.

3) Operate controllers either in internal networks, or use a coded VPN connection for internet access, to limit attacks from external Internet users.

4) Recommend your customers (network domain owners) to make use of HTTPS for secure web-browser access to the controller.

5) Recommend your customers (network domain owners) to obtain a certificate from a Certification Authority, and download this certificate into the controller.

6) If a web-access outside a VPN is to be realized, it should be handled through a firewall with appropriate “Whitelisting”, although a VPN is strongly recommended, because it is the best way to provide secure and encrypted communications to the controller.

7) Close all ports on the Internet router/gateway, and only open those ports that are mandatory for operation or maintenance, to minimize the attack surface.

8) BACnet (e.g. port 47808) should never be exposed to the Internet, not even through a firewall, but should only be exposed on internal networks or via a VPN, because the BACnet protocol does not have security built-in.

9) Never use the default passwords, because they are widely available and are therefore easily guessed.

10) Use “strong” passwords, because modern password “crackers” can break simple passwords in a matter of minutes.

11) Never operate CIPer controllers unprotected on open Internet.

NOTE: “Whitelisting” stands for allowing explicit IP-Addresses or MAC addresses of dedicated and trusted PCs to access the controller behind the firewall and router.
Part numbers and supporting material

<table>
<thead>
<tr>
<th>Part Number (SKU)</th>
<th>Description</th>
<th>Built-in IO points</th>
<th>Built-in HMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEB-EAGLENX26ND</td>
<td>100 Global Points (Panel-bus, on-board I/O) +10 Analytics Points + WEBS N4 Software Maintenance Agreement</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td>WEB-EAGLENX26D</td>
<td></td>
<td>26</td>
<td>Yes</td>
</tr>
<tr>
<td>EAGLEH255PUP</td>
<td>255 Additional Panel-bus Expansion I/O Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIN-DEV-UP-1</td>
<td>+1 Device and +50 Global points (LON, Modbus, Panelbus, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPU-11-01</td>
<td>Spare part for WEB-EAGLENX26ND and WEB-EAGLENX26D. Removable terminal plugs: push-in type; set of 3 plugs;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPU-45-01</td>
<td>Spare part for WEB-EAGLENX26D and ND: Removable terminal plugs; push-in type; set of 9 plugs;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XS831</td>
<td>Set of 10 terminals for converting 0…20mA signals to 0…10VDC: Each set consists of two groups of four pairs of push-in terminals, each with a 499 Ohm resistor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVC-80-AC1</td>
<td>Terminal cover. Package of ten. Color RAL 9011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVC-80-AC2</td>
<td>Door mounting frame. Package of ten. Color RAL 9011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVC-40-AC3</td>
<td>Cabling strain relief. Package of ten.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance

Performance tests

The system boundaries are hard to define, as they depend on many factors, such as the boundaries of the hardware performance in general, the network performance, the “traffic” created by the application, concurrent polls from Supervisors, Station Save intervals, Recovery Service intervals, etc.

In addition to the general Tridium guidance of a maximum of 80% CPU load, Honeywell has undertaken two exemplary performance tests.

The maximum recommended CPU usage is outlined in the two tables below.

<table>
<thead>
<tr>
<th></th>
<th>no. of modules</th>
<th>no. of hardware I/O points</th>
<th>points in PX pages</th>
<th>freq. of value changes</th>
<th>histories enabled</th>
<th>CPU usage</th>
<th>test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Bus (via RS485-1)</td>
<td>46^A</td>
<td>491</td>
<td>491^B</td>
<td>2 sec (poll rate)</td>
<td>--</td>
<td>30%</td>
<td>OK for non-critical applications</td>
</tr>
<tr>
<td>BACnet MS/TP (via RS485-2)</td>
<td>13</td>
<td>559</td>
<td>559^D</td>
<td>2 sec (COV)^E</td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^A 9x 821A, 9x 822A, 9x 823A, 9x 824, 5x 825, 5x 830A
^B Four (4) PX pages: AI, AO, BI, and BO points each in a dedicated PX page per point type
^C About 0.5% of the BACnet MS/TP point updates are occasionally delayed.
^D One (1) PX page with all points
^E COV: Change of Value. COV frequency is rate of change in the value of an object property.

<table>
<thead>
<tr>
<th></th>
<th>max. no. of COV updates per min. across RS485-1 and RS485-2 together</th>
<th>CPU usage</th>
<th>test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet MS/TP at 38,500 bps</td>
<td>4 sec</td>
<td>4,000</td>
<td>25...35% (occasionally: 60%)</td>
</tr>
</tbody>
</table>

Panel-Bus capacity

128 Panel-Bus IO modules per CIPer Model 50 are supported:

Up to 64 Panel-Bus IO modules on RS485-1

- Max. 16 IO modules per type
 - Example 1:
 - 16x XF830A + 16x XF821A + 16x XF823A + 16x XF824A
 - Example 2:
 - 10x + 12x XF821A + 12x XF822A + 12x XF823A + 12x XF824A + 6x XF825A

Up to 64 Panel-Bus IO modules on RS485-2

- Max. 16 IO modules per type
 - Example 1:
 - 16x XF830A + 16x XF821A + 16x XF823A + 16x XF824A
 - Example 2:
 - 10x + 12x XF821A + 12x XF822A + 12x XF823A + 12x XF824A + 6x XF825A
Panel-Bus Communication tuning
The default polling time for all Panel-Bus points is set to “Normal = 10s”. This means that the data from the field are updated every 10s. Write commands are sent without time delay.

The polling frequency can be changed, and we do recommend that it must be updated more frequently.

Important: For CiPer Model 50, the fastest poll rate is 200 milliseconds. Do NOT set a faster poll-rate, as this may overload the CPU in larger systems.

Editing the standard polling frequency can be done inside the “Poll Scheduler” of the Property Sheet of the PanelbusNetwork:
The Assignment of the different Poll Intervals for each point is done inside the Panelbus Point Discovery Dialog.

Panel-Bus cable type and length

See CIPer Model 50 Installation and Commissioning Instructions 31-00233EFS for all details.

Max. Panel Bus length:

120 ft for any type of cabling and topology. No additional end termination is permitted.

2400 ft for twisted-pair or telephone cable and daisy chain topology. The Controller must be positioned at one end of the Panel-Bus, and an end termination (120 Ω) at the other end. Furthermore, the three-position slide switch must be set to “END.” Use Honeywell cable 3322 or 3251.
Compatibility

WEBs compatibility
N4.4U2 is mandatory for CIPer Model 50, also the related jar-files and modules in order to run the CIPer 50 with HMI. Downloaded the workbench version N4.4.93.40.8 from the WEBs Building Forum.

For compatibility of WEBs N4, please refer to the WEBs N4.4.93.40.8 Release Bulletin.

Spyder & Stryker tool compatibility

The Spyder tool is not supported on CIPer Model 50. Configured Spyder controllers LON and/or BACnet can be integrated. They are supported as 3rd party LON and BACnet devices.

3rd party modules

Support and distribution of Niagara 4 modules that have been developed and distributed by 3rd party companies lie with these 3rd party companies.
CIPer Model 50 specific modules

The following modules are CIPer Model 50 specific:

<table>
<thead>
<tr>
<th>Module</th>
<th>Version</th>
<th>Available from</th>
<th>How to install into WEBs N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>honEagleHawkHMI-rt.jar</td>
<td>4.4.92.2.1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>honEagleHawkHMI-wb.jar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>honEagleHawkHMI-ux.jar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>honTagDictionary-rt.jar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cIIOCreation-rt.jar</td>
<td>4.4.73.24.1.6</td>
<td></td>
<td>Honeywell Buildings Forum</td>
</tr>
<tr>
<td>cIIOCreation-wb.jar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cIOnboardIo-rt.jar</td>
<td>4.4.92.2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cIOnboardIo-wb.jar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cIPanelBus-rt.jar</td>
<td>4.4.92.2.1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cIPanelBus-wb.jar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>platPanelbus-rt.jar</td>
<td>4.4.73.24.1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clean-dist-honeywell-nxubc.dist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cICBus-rt.jar</td>
<td>4.4.92.2.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cICBus-ux.jar</td>
<td>4.4.73.24.1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cICBus-wb.jar</td>
<td>4.4.92.2.1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Shut-down Model 50
2) Copy the *.jar files into the folder "c:\Honeywell\WEBStation-N4-4.4.93.40.30\modules\" on your PC where the Niagara N4 installation resides
3) Restart Niagara N4 and the platform
4) Run the "software manager" and "update all out-of-date" files.
5) Start station
WEBs N4 Driver compatibility

Supported Drivers

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Default Port</th>
<th>Hardware Interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Daemon</td>
<td>3011</td>
<td>Ethernet RJ45, IP via USB-B</td>
</tr>
<tr>
<td>Platform Daemon SSL</td>
<td>5011</td>
<td>Ethernet RJ45, IP via USB-B</td>
</tr>
<tr>
<td>Station (FOX)</td>
<td>1911</td>
<td>Ethernet RJ45, IP via USB-B</td>
</tr>
<tr>
<td>Station Secure (FOXs)</td>
<td>4911</td>
<td>Ethernet RJ45, IP via USB-B</td>
</tr>
<tr>
<td>HTTP *</td>
<td>80</td>
<td>Ethernet RJ45, IP via USB-B</td>
</tr>
<tr>
<td>BACnet/IP</td>
<td>47808</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>Email alarming, SMTP</td>
<td>25, 587</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>N/A</td>
<td>Ethernet RJ45, IP via USB-B</td>
</tr>
<tr>
<td>SSH</td>
<td>N/A</td>
<td>Not supported</td>
</tr>
<tr>
<td>SNMP</td>
<td>10161, 10162</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>SMS</td>
<td>Check SMS provider</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>MQTT</td>
<td>1883</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>MQTT Secure</td>
<td>8883</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>KNX ElBnet/IP</td>
<td>3671</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>LON IP</td>
<td>2540, 2541</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>502</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>oBIX</td>
<td>80 or 8443</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>Open ADR</td>
<td>Check customer System Admin (e.g. 80, 8443, 5222, 5223, 5269, 5280)</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>EnOcean</td>
<td>Check customer System Admin</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>Fidelio FIAS MICROs protocol</td>
<td>Check customer System Admin</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>C-Bus Driver (SUSI)</td>
<td>2499</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>BACnet MSTP</td>
<td>N/A</td>
<td>RS485-1, RS485-2</td>
</tr>
<tr>
<td>Panel-Bus</td>
<td>N/A</td>
<td>RS485-1, RS485-2</td>
</tr>
<tr>
<td>Modbus RTU/ASCII Master</td>
<td>N/A</td>
<td>RS485-1, RS485-2</td>
</tr>
<tr>
<td>Modbus RTU/ASCII Slave</td>
<td>N/A</td>
<td>RS485-1, RS485-2</td>
</tr>
<tr>
<td>M-Bus</td>
<td>N/A</td>
<td>RS232 plus PW3/20/60</td>
</tr>
</tbody>
</table>

*Information on HTTP and HTTPS ports:
WEBs N4 Version N4.4.93.40.8 includes a template which automatically changes these two ports to 8080 (HTTP) and 8443 (HTTPS), when creating a new station.*

Un-supported Drivers

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Hardware Interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTV</td>
<td>Ethernet RJ45</td>
</tr>
<tr>
<td>SMS</td>
<td>RS232 plus modem</td>
</tr>
<tr>
<td>The Niagara framework does not support this protocol on N4.</td>
<td>Ethernet RJ45</td>
</tr>
</tbody>
</table>

Drivers not tested

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Hardware Interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other drivers than listed under “Supported Drivers” and “Un-supported Drivers” may well work but have not been tested.</td>
<td>Ethernet RJ45</td>
</tr>
</tbody>
</table>
Web-Browser compatibility
Supported browsers are Google Chrome, Mozilla Firefox, MS Internet Explorer 11 and MS Edge. For best result, we recommend the current version of Google Chrome.

Input/Output module compatibility
All Panel-Bus module versions (XF8xxx...) are supported by CIPer Model 50.

- XF821A
- XF822A, XFR822A
- XF823A
- XF824A, XFR824A
- XFR825A
- XF830A

All LON IO modules (XFL8xxx) are supported by CIPer Model 50. Please review license limitations if LON modules should be used.

- XFL821A
- XFL822A, XFLR822A
- XFL823A
- XFL824A, XFLR824A
- IFLON-2

The following LON IO modules from the Excel 500 system are supported by CIPer Model 50:

- XFL521B
- XFL522B, XFR522A
- XFL523B
- XFL524B, XFR524A
CIPer Model 50 Firmware

Firmware & Hardware compatibility
This firmware version 4.4.92.2.1.5 is compatible with all released CIPer Model 50 models, date code 1844 or later, see table below.

<table>
<thead>
<tr>
<th>Part Number (SKU)</th>
<th>Description</th>
<th>Built-in IO points</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEB-EAGLENX26D</td>
<td>CIPer Model 50 including license for:</td>
<td>26</td>
</tr>
<tr>
<td>WEB-EAGLENX26ND</td>
<td>• 100 Global Points (Panel-bus, on-board I/O) +10 Analytics Points</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• WEBS N4 Software Maintenance Agreement</td>
<td></td>
</tr>
</tbody>
</table>

Firmware upgrade
Check the installed firmware version in your CIPer Model 50. Open WEBS N4, go to the Platform/Platform Administration and check the Version of the Niagara Runtime for the CIPer Model 50 installed.

Firmware updates may be available on the Honeywell Buildings Forum and the firmware upgrade procedure will be available with the firmware updates. If there are any queries on firmware / firmware updates, please reach out to Honeywell WEBS technical support (WEBsSquad@honeywell.com).
How to Restore the CIPer Model 50 – Installation of the “Clean Dist” file

To restore the CIPer Model 50 to the factory status, proceed as follows:

1. Know the logon credentials for the CIPer Model 50 platform.
2. Connect/logon to the CIPer Model 50 platform.
3. Select “Distribution File Installer”.

![Image of CIPer Model 50 platform interface]
4. Select the file “clean-dist-honeywell-nxubc.dist” and press the “Install”-button.

5. Let the installation complete.

After the installation has been completed:
• The CIPer Model 50 will disconnect and reboot.
• The default platform passphrase will be active after reboot.
• The default login/password for the platform will be active after reboot.
• The Licenses and Certificates are retained.
• The TCPIP Address Settings are retained.
• Modules are erased.
• Station and station data are erased.
• Firmware is retained.

Upon “installation complete”, press the “Close” button.

Reset CIPer Model 50 controller credentials

For “Resetting platform credentials in the CIPer Model 50 controller”, refer to Honeywell Technical Bulletin T019-004.
Technical Documentation

<table>
<thead>
<tr>
<th>Product</th>
<th>Document type</th>
<th>Document name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPer Model 50</td>
<td>Honeywell General Best Practices</td>
<td>31-00129</td>
</tr>
<tr>
<td>CIPer Model 50</td>
<td>Product data sheet</td>
<td>31-00197-01</td>
</tr>
<tr>
<td>CIPer Model 50</td>
<td>Mounting Instructions</td>
<td>31-00234EFS</td>
</tr>
<tr>
<td>CIPer Model 50</td>
<td>Installation and commissioning instructions</td>
<td>31-00233EFS</td>
</tr>
<tr>
<td>CIPer Model 50</td>
<td>Sell sheet</td>
<td>01-00110</td>
</tr>
<tr>
<td>CIPer Model 50</td>
<td>Guide Specification in PDF, WORD and ODT formats</td>
<td>Version 4.2 dated 4-May-2018</td>
</tr>
</tbody>
</table>
Appendix

USB Driver Installation for Windows 7

1. Insert the A Male connector of the USB cable into an USB interface jack of the PC and insert the B Male connector into the controller’s USB device interface jack.

 RESULT: The Found New Hardware Wizard is enabled in the Windows Task Line.

2. In the Windows Task Line, double-click the icon.

 RESULT: The Driver Software Installation message box displays.

 ![Driver Software Installation]

 Device driver software was not successfully installed

 RNDIS/Ethernet Gadget [X] No driver found

 You can change your setting to automatically search Windows Update for drivers
 Change setting...

 What can I do if my device did not install properly?

3. If no RNDIS/Ethernet Gadget driver was found as indicated by the message ‘X No driver found’, click Change setting... button.

 RESULT: The Device Installation Settings dialog box displays.
4. Select No, let me choose what to do, and then select Install driver software from Windows Update if it is not found on my computer.

5. Click Save Changes button.

RESULT: Software tries to install the RNDIS/Ethernet Gadget driver. If the driver is successfully installed, it can be seen in the following locations within Windows (see figures below):

 In Control Panel\Hardware and Sound \ Devices and Printers
In Control Panel \ Network and Internet \ Network Connections
6. If the driver has still not been successfully installed, do the following:

7. Right-click on the driver in the **Network adapters** folder in the **Device Manager**, and then click **Update Driver Software**.

8. Click **Browse my computer for driver software**.

9. Click **Let Me Pick from a list of device drivers on my computer**.

10. Click **Have Disk**...

11. Click **Browse...** and navigate to the folder <drive:\CARE\drivers>.

12. Depending on your Windows operating system type (32 bit or 64 bit), select the RNDIS USB driver (32Bit) or the RNDIS USB driver (64Bit) file, and then click **Open**.

13. Click **OK**.

14. Select **Linux USB Ethernet/RNDIS Gadget**, and then click **Next**.

15. If a warning message displays, click **Continue Anyway**.

RESULT: Windows will install the driver.

16. Click **Close**.
17. Check the successful installation of the driver as described in step 5.

18. If this still does not work, use the driver shipped with Windows.

19. Right-click on the driver in the **Network adapters** folder in the **Device Manager**, and then click **Update Driver Software**.

20. Click **Browse my computer for driver software**.

21. Click **Let Me Pick from a list of device drivers on my computer**.

22. Uncheck the Show compatible hardware box.

23. Select the Manufacturer **Microsoft Corporation**.

24. Select **Remote NDIS Compatible Device**.

25. Check the successful installation of the driver as described in step 5.

26. If the device status is “This device cannot start. (Code 10)”, reboot your PC.
USB Driver Installation for Windows 8

1. Insert the A Male connector of the USB cable into an USB interface jack of the PC and insert the B Male connector into the controller’s USB device interface jack.

2. In Windows, start the device manager.

3. Click Other devices, then right-click RNDIS/Ethernet Gadget and then select Update Driver Software...

RESULT: The Update Driver Software – RNDIS/Ethernet Gadget dialog displays.
4. Click **Browse my computer for driver Software**...

5. Click **Let me pick from a list of device drivers on my computer**.
6. Select **Network adapters**.

7. Select **Microsoft**.
8. Select **USB-RNDIS-Adapter**, and then click **Next** button.

 RESULT: The Update Driver Warning message box displays.

 ![Update Driver Warning]

 Installing this device driver is not recommended because Windows cannot verify that it is compatible with your hardware. If the driver is not compatible, your hardware will not work correctly and your computer might become unstable or stop working completely. Do you want to continue installing this driver?

 ![Yes No]

9. Confirm the warning by clicking **Yes** button.

 RESULT: The driver will be installed successfully as indicated by the final message box.

 ![Update Driver Software - USB RNDIS Adapter #2]

 Windows has successfully updated your driver software

 Windows has finished installing the driver software for this device

 ![USB RNDIS Adapter]

10. Click **Close** button.
USB Driver Installation for Windows 10

Typically, the appropriate driver is automatically installed with Windows update.

If you have issues with the installation, please contact the manufacturer of your PC to obtain updates of the chipset driver.